AQA Combined Science & Physics.

D

۱. ۱۱.

III.

IV.

Method: Specific heat capacity -

Unit 1: Energy

Equations to memorize

rear. 9

GPE = m q h

Energy Stores & pathways									
1	energy		the capacity to do work						
2	system		an object or a group of objects						
3	energy Pathway		process by which energy is transferred						
4	gravitational pote	ntial	energy stored in an object raised in height						
	energy (GPE)								
5	elastic potential		energy stored in an object which has been						
	energy (EPE)		stretched or compressed						
6	kinetic energy (KE)	energy stored in an object which is in motion						
7	thermal energy		energy stored which raises the temperature						
8 chemical energy			transferred during chemical reactions eg fuels,						
			foods, or in batteries						
9	conservation of		energy cannot be created or destroyed, only						
	energy		transferred usefully, stored or dissipated						
10	dissipated energy		energy lost to the environment or wasted						
11	energy Efficiency		the proportion of the total energy supplied to a						
			device that is transferred usefully						
12	power		the rate at which energy is transferred or the						
			rate at which work is done						
13	work done		transfer of energy from one store to another						
Specific heat capacity									
14	Specific Heat	the en	ergy required to increase the temperature of						
	Capacity	1kg of	of a substance by 1°C						
15	Required Practical: specific heat capacity								
Α	Independent Varia	able:	type of metal/substance						
В	Dependent Variab	le:	specific heat capacity						
С	Control Variables:		same heater, mass of metal						

Insert heater and thermometer into 1kg block of metal

SHC = energy transferred/mass x change in temperature

record temperature every minute for 10 minutes

Calculate energy transferred = power x time

17 elastic potential energy $EPE = \frac{1}{2} k e^2$ = $0.5 \times \text{spring constant } \times (\text{extension})^2$ 18 kinetic energy = 0.5 x mass x (velocity)² $KE = \frac{1}{2} m v^2$ 19 energy = $E = m x c x \Delta \vartheta$ mass x specific heat capacity x temperature change 20 work done = force x distance W = f x d21 power = work done/time P = E/t**OR** Power = energy transferred/ time OR P = Wd/t22 efficiency = useful output energy transfer Total input energy transfer

16 gravitational potential energy = mass x gravity x height

Units									
23	energy		E	Joules	J				
24	mass		m	kilograms	kg				
25	gravitational field strength		g	Newtons/kilogram	N/kg				
26	height		h	metres	m				
27	spring constant		k	Newtons/metre	N/m				
28	extension		е	metres	m				
29	velocity		v	metres per second	ms⁻¹				
30	specific heat capacity		С	Joules/kilogram degree	J/kg°C				
31	change in temperature		$\Delta \vartheta$	degrees Celsius	°C				
32	work done		Wd	Joules	J				
33	force		f	Newton	Ν				
34	distance		d	metres	Μ				
35	power		Р	watts	W				
36	time		t	seconds	S				
Energy resources									
37	renewable energy	energy resource that will not run out							
38	renewable resources	solar, wind, tidal, geothermal, hydroelectric,							
		biofuel							
39	non-renewable energy	energy from a finite resource							
40	fossil Fuel	non-renewable energy resources made from							
		the fossilised remains of animals and plants.							